A comparison of rice chloroplast genomes.

نویسندگان

  • Jiabin Tang
  • Hong'ai Xia
  • Mengliang Cao
  • Xiuqing Zhang
  • Wanyong Zeng
  • Songnian Hu
  • Wei Tong
  • Jun Wang
  • Jian Wang
  • Jun Yu
  • Huanming Yang
  • Lihuang Zhu
چکیده

Using high quality sequence reads extracted from our whole genome shotgun repository, we assembled two chloroplast genome sequences from two rice (Oryza sativa) varieties, one from 93-11 (a typical indica variety) and the other from PA64S (an indica-like variety with maternal origin of japonica), which are both parental varieties of the super-hybrid rice, LYP9. Based on the patterns of high sequence coverage, we partitioned chloroplast sequence variations into two classes, intravarietal and intersubspecific polymorphisms. Intravarietal polymorphisms refer to variations within 93-11 or PA64S. Intersubspecific polymorphisms were identified by comparing the major genotypes of the two subspecies represented by 93-11 and PA64S, respectively. Some of the minor genotypes occurring as intravarietal polymorphisms in one variety existed as major genotypes in the other subspecific variety, thus giving rise to intersubspecific polymorphisms. In our study, we found that the intersubspecific variations of 93-11 (indica) and PA64S (japonica) chloroplast genomes consisted of 72 single nucleotide polymorphisms and 27 insertions or deletions. The intersubspecific polymorphism rates between 93-11 and PA64S were 0.05% for single nucleotide polymorphisms and 0.02% for insertions or deletions, nearly 8 and 10 times lower than their respective nuclear genomes. Based on the total number of nucleotide substitutions between the two chloroplast genomes, we dated the divergence of indica and japonica chloroplast genomes as occurring approximately 86,000 to 200,000 years ago.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Development of Chloroplast Genomic Resources for Oryza Species Discrimination

Rice is the most important crop in the world as the staple food for over half of the population. The wild species of Oryza represent an enormous gene pool for genetic improvement of rice cultivars. Accurate and rapid identification of these species is critical for effective utilization of the wild rice germplasm. In this study, we developed valuable chloroplast molecular markers by comparing th...

متن کامل

A strategy to recover a high-quality, complete plastid sequence from low-coverage whole-genome sequencing1

PREMISE OF THE STUDY We developed a bioinformatic strategy to recover and assemble a chloroplast genome using data derived from low-coverage 454 GS FLX/Roche whole-genome sequencing. METHODS A comparative genomics approach was applied to obtain the complete chloroplast genome from a weedy biotype of rice from Uruguay. We also applied appropriate filters to discriminate reads representing nove...

متن کامل

Fine structural features of the chloroplast genome: comparison of the sequenced chloroplast genomes.

The entire nucleotide sequences of the rice, tobacco and liverwort chloroplast genomes have been determined. We compared all the chloroplast genes, open reading frames and spacer regions in the plastid genomes of these three species in order to elucidate general structural features of the chloroplast genome. Analyses of homology, GC content and codon usage of the genes enabled us to classify th...

متن کامل

Characterization of the whole chloroplast genome of Chikusichloa mutica and its comparison with other rice tribe (Oryzeae) species

Chloroplast genomes are a significant genomic resource in plant species and have been used in many research areas. The complete genomic information from wild crop species could supply a valuable genetic reservoir for breeding. Chikusichloa mutica is one of the most important wild distant relatives of cultivated rice. In this study, we sequenced and characterized its complete chloroplast (cp) ge...

متن کامل

Simple sequence repeats in organellar genomes of rice: frequency and distribution in genic and intergenic regions

MOTIVATION Simple sequence repeats (SSRs) are abundant across genomes. However, the significance of SSRs in organellar genomes of rice has not been completely understood. The availability of organellar genome sequences allows us to understand the organization of SSRs in their genic and intergenic regions. RESULTS We have analyzed SSRs in mitochondrial and chloroplast genomes of rice. We ident...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Plant physiology

دوره 135 1  شماره 

صفحات  -

تاریخ انتشار 2004